The Synthesis of 2,5-Dialkylcyclopentanones from Aliphatic Aldehydes and Formaldehyde

Yoshihisa Watanabe,* Fukashi Sakamoto, Sang Chul Shim, and Take-aki Mitsudo Department of Hydrocarbon Chemistry, Kyoto University, Sakyo-ku, Kyoto 606 (Received April 8, 1981)

Synopsis. Aliphatic aldehydes react with formaldehyde in the presence of dimethylamine hydrochloride at 200 °C to form 2,5-dialkylcyclopentanones in moderate yields. Propanal, butanal, and pentanal give 2,5-dimethyl-, 2,5-diethyl-, and 2,5-dipropylcyclopentanone respectively, but ethanal gives only a tarry material.

A large variety of methods are available for building up the cyclopentanone and cyclopentenone ring.¹⁻⁹⁾ In the course of our study of the α-methylation of ketones,¹⁰⁾ we have found a novel method for the preparation of cyclopentanone derivatives by treating aliphatic aldehydes with formaldehyde in the presence of a secondary amine hydrochloride. The combination of straight chain aliphatic aldehydes with formaldehyde in the present method represents a unique pathway to the formation of the cyclopentanone ring.

Experimental

Reagent. The propanal and butanal were distilled and dried over Na₂SO₄. The other reagents were commercial products. Formaldehyde(guaranteed reagent 35% Wako Chemicals Co.,) was used.

An autoclave with a 100-ml capacity, Reaction Procedure. made of stainless steel and equipped with a magnetic stirrer, was used in each run. Forty mmol of aliphatic aldehyde, 35% aqueous formaldehyde (40-80 mmol as formaldehyde), 20 ml of a solvent, and 20-40 mmol of dimethylamine hydrochloride were put into it. After the replacement of the argon in the autoclave, it was kept at 200 °C by electrical heating for 4 h. The products, such as 2,5-dimethyl-, 2,5-diethyl-, 2,5dipropyl-, and 2,5-dipentylcyclopentanone, were isolated by distillation or column chromatography. They were characterized by their IR, ¹H, ¹³C-NMR, and mass spectra, and by elemental analysis. The 2,5-dimethylcyclopentanone formed was identified by a comparison of its mp, IR, and ¹H and the ¹³C-NMR spectra of its 2,4-dinitrophenylhydrazone derivative with those of an authentic sample. GLC analysis was made using internal standards: a column $(0.3 \text{ cm}\phi \times 3 \text{ m})$ packed with PEG 20M 10%.

2,5-Diethylcyclopentanone (**1b**); bp 71—76 °C/17 Torr (1 Torr=133.3 Pa). Found as 2,4-dinitrophenylhydrazone, mp 113—115 °C: C, 56.01; H, 6.24; N, 17.48; O, 20.25%. Calcd for $C_{15}H_{20}N_4O_4$: C, 56.24; H, 6.29; N, 17.48; O, 19.98%. 2,5-Dipropylcyclopentanone (**1c**); bp, 89—92 °C/8 Torr. Found as semicarbazone, mp, 168—170 °C: C, 63.69; H, 10.36; N, 18.56%. Calcd for $C_{12}H_{23}N_3O$: C, 63.96; H, 10.29; N, 18.65%. 2,5-Dibutylcyclopentanone (**1d**); bp 86—92 °C/4 Torr. Found as semicarbazone, mp 118—120 °C: C, 65.80; H, 10.72; N, 16.12%. Calcd for $C_{14}H_{27}N_3O$: C, 66.34; H, 10.74; N, 16.31%. 2,4-Dipentylcyclopentanone (**1e**) was chromatographed on silica gel (3 cm × 30 cm), using benzene as an eluent. A light yellow liquid was obtained. 120

Analytical Procedure. The infrared spectra were measured on a Hitachi model 215 grating spectrophotometer. The ¹H-NMR spectra were obtained at 60 MHz with a JEOL JNM-60, at 100 MHz with a JEOL JNM-100, and at 220 MHz with a Varian model HR-220 NMR spectrometer. The

 $^{13}\text{C-NMR}$ spectra were obtained at 25.05 MHz with a JEOL pulsed Fourier transform spectrometer model FX-100. Samples were dissolved in CDCl3 and the chemical shift values were expressed in $\delta\text{-values}$ (ppm) relative to Me4Si as an internal standard. The mass spectra were recorded on a JMS-O1SG mass spectrometer.

Results and Discussion

Two molecules of aldehydes reacted with one molecule of formaldehyde in the presence of dimethylamine hydrochloride to form 2,5-dialkylcyclopentanones in moderate yields. The results are summarized in the Tables. Each of the C₃—C₇ aldehydes with a straight chain structure, such as propanal, butanal, pentanal, hexanal, and heptanal, gives the corresponding 2,5-

Table 1. Synthesis of 2,5-dialkylcyclopentanones from aliphatic aldehydes and formaldehyde^a)

Run	Aldehyde	Substituted cyclopentanone	Yield/%
1	Ethanal	Tarry material	
2	Propanal	2,5-Dimethyl- $(1a)$	16 ^{b)}
3	Butanal	2,5-Diethyl- $(1b)$	22 ^{b)}
4	Pentanal	2,5-Dipropyl- $(1c)$	26°)
5	Hexanal	2,5-Dibutyl-(1d)	19°)
6	Heptanal	2,5-Dipentyl-(1e)	21°)
7 ^d)	Butanal	None	≈ 0

a) Aldehyde 40 mmol, NH (CH₃)₂·HCl 40 mmol, HCHO, 80 mmol, 200 °C, 4 h, dioxane 20 ml, HCOOH 20 mmol. b) Determined by GLC. Based on the amount of aldehyde used. c) Isolated yield. d) Without NH(CH₃)₂·HCl.

RCH₂CHO
$$\begin{array}{c}
\text{RC} + \text{CH}_{2} \\
\text{RC} + \text{CH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{RC} + \text{CH}_{2} \\
\text{RC} + \text{CH}_{3}
\end{array}$$

$$\begin{array}{c}
\text{RC} + \text{CH}_{3} \\
\text{RC} + \text{CH}_{3}
\end{array}$$

$$(CH_2)_4$$
 N-CH=CH-Et + CH₂=C-CHO $\frac{E_1}{200^{\circ}C, 4 \text{ h}}$ 1b (3)

Table 2.	Spectroscopic data of 2,5-dialkylcyclopentanones
	¹³ C-NMR (ppm from TMS)

					\ - -	,					
		IR $\nu_{C=0}/cm^{-1}$	M ⁺	C=O	CH	CH ₂ (in ring)	CH ₂ (side ch	ain)		CH ₃
1b	trans	1740	140	222.2	51.0	27.0	23.0				11.7
	cis	1740	140	222.8	49.9	26.2	23.1				12.0
1c	trans	1740	168	222.2	49.3	27.7	32.3	20.7			14.0
	cis	1740	100	222.6	48.2	26.8	32.4	20.8			14.0
1d	d trans	1740	196	223.0	49.4	27.7	90.0	29.6	00.7	22.7	13.9
	cis	1740	190	223.6	48.3	26.7	29.8		22.7		
le	trans	1740	224	222.5	49.5	27.7	31.8	30.0	07 1	22.5	14.0
	cis			(4	48.4) ((26.8)			27.1		14.0

dialkylcyclopentanone. Ethanal failed to give cyclopentanone, but provided only a tarry material. The amine salt is necessary for this ring formation (see Run 7).

The ¹³C-NMR spectra of the products from butanal, pentanal, hexanal, and heptanal exhibited two sets of peaks with different intensities, assignable to *trans*- and *cis*-2,5-dialkylcyclopentanone. The *trans* isomers predominate in **1b**, **1c**, and **1d**, and the *trans* to *cis* mole ratios are estimated to be about 2:1 from the height of peaks of ¹³C-NMR spectra. With **1e**, the *trans* isomer highly predominates, and only a trace of the *cis* isomer is formed.

Though the mechanism of this reaction is not yet clear, the following two condensates are considered to be the reaction intermediates: the 2-alkylpropenal derived by the reaction of the aldehyde with formaldehyde, and an enamine (Eq. 2). 2,5-Dialkylcyclopentanones may be derived from these condensates via several steps. This consideration may be supported by the fact that the reaction between 2-ethylpropenal and 1-(1-pyrrolidinyl)-1-butene at 200 °C for 4 h gave 2,5-diethylcyclopentanone in a 13% yield, while 2-alkylpropenals were readily formed under the conditions used.

References

- 1) P. S. Pinkey, Org. Synth., Coll. Vol. 2, 116 (1943).
- 2) J. F. Thorpe and G. A. R. Kon, Org. Synth., Coll. Vol. 1, 192 (1941).
- 3) L. Rand, W. Wagner, P. O. Warner, and L. R. Kovac, J. Org. Chem., 27, 1034 (1962).
- 4) B. Fell, W. Side, and F. Asinger, Tetrahedron Lett., 1968, 1003.
 - 5) R. F. Heck, J. Am. Chem. Soc., 85, 3116 (1963).
- 6) R. C. Cookson and S. A. Smith, J. Chem. Soc., Chem. Commun., 1979, 145.
 - 7) G. P. Chiusoli, Bull. Soc. Chim. Fr., 1969, 1139.
- 8) R. Noyori, K. Yokoyama, and Y. Hayakawa, J. Am. Chem. Soc., 95, 2722 (1973).
- 9) H. Sakurai, A. Shirahata, and A. Hosomi, *Angew. Chem.*, **91**, 178 (1979).
- 10) Y. Watanabe, Y. Shimizu, K. Takatsuki, and Y. Takegami, Chem. Lett., 1978, 215.
- 11) J. B. Stothers and C. T. Tan, Can. J. Chem., 52, 308 (1974).
- 12) Although 1e could not be isolated in an analytically pure form and failed to give its semicarbazone and 2,4-dinitrophenylhydrzaone, it was identified on the basis of its spectral data.